You are here

Mark L. Palmeri

Mark L. Palmeri

Associate Professor of the Practice in the Department of Biomedical Engineering

Mark L. Palmeri received his B.S. degree in Biomedical and Electrical Engineering from Duke University, Durham, NC, in 2000.  He was a James B. Duke graduate fellow and received his Ph.D. degree in Biomedical Engineering from Duke University in 2005 and his M.D. degree from the Duke University School of Medicine in 2007.  He is currently an Assistant Research Professor in Biomedical Engineering and Anesthesiology at Duke University.  He is an Associate Editor for Ultrasound in Medicine and Biology and IEEE Transactions in Medical Imaging, and he serves as a member of the RSNA Quantitative Imaging Biomarker Alliance (QIBA) committee for ultrasound shear wave speed imaging. His research interests include acoustic radiation force shear wave elasticity imaging, ultrasonic imaging, finite element analysis of soft tissue response to acoustic radiation force excitation, medical image processing and medical instrumentation design.

Appointments and Affiliations

  • Associate Professor of the Practice in the Department of Biomedical Engineering
  • Assistant Research Professor of Anesthesiology

Contact Information

Education

  • M.D. Duke University, 2007
  • Ph.D. Duke University, 2005
  • B.S.E. Duke University, 2000

Research Interests

Ultrasonic imaging, specifically using acoustic radiation force to characterize the mechanical properties of tissue, and finite element analysis of soft tissue response to impulsive radiation force excitation. Other research interests include ultrasonic bioeffects and mechanical testing of soft tissues.

Awards, Honors, and Distinctions

  • Lois and John L. Imhoff Distinguished Teaching Award. Duke University Pratt School of Engineering. 2017
  • Certificate for Excellence in Teaching. Duke University Pratt School of Engineering. 2015
  • Lois and John L. Imhoff Distinguished Teaching Award. Duke University Pratt School of Engineering. 2012
  • James B. Duke Graduate Fellowship. Duke University Graduate School. 2002

Courses Taught

  • BME 354L: Introduction to Medical Instrumentation
  • BME 464L: Medical Instrument Design (DR)
  • BME 493: Projects in Biomedical Engineering (GE)
  • BME 494: Projects in Biomedical Engineering (GE)
  • BME 590: Special Topics in Biomedical Engineering
  • BME 590L: Special Topics with Lab
  • BME 790: Advanced Topics for Graduate Students in Biomedical Engineering
  • BME 790L: Advanced Topics with the Lab for Graduate Students in Biomedical Engineering
  • BME 791: Graduate Independent Study

In the News

Representative Publications

  • Rouze, NC; Deng, Y; Trutna, CA; Palmeri, ML; Nightingale, KR, Characterization of Viscoelastic Materials Using Group Shear Wave Speeds, Ieee Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol 65 no. 5 (2018), pp. 780-794 [10.1109/TUFFC.2018.2815505] [abs].
  • Rosado-Mendez, IM; Carlson, LC; Woo, KM; Santoso, AP; Guerrero, QW; Palmeri, ML; Feltovich, H; Hall, TJ, Quantitative assessment of cervical softening during pregnancy in the Rhesus macaque with shear wave elasticity imaging., Physics in Medicine and Biology, vol 63 no. 8 (2018) [10.1088/1361-6560/aab532] [abs].
  • Lipman, SL; Rouze, NC; Palmeri, ML; Nightingale, KR, Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates., Ultrasound in Medicine & Biology, vol 44 no. 4 (2018), pp. 897-908 [10.1016/j.ultrasmedbio.2017.12.019] [abs].
  • Carlson, LC; Hall, TJ; Rosado-Mendez, IM; Palmeri, ML; Feltovich, H, Detection of Changes in Cervical Softness Using Shear Wave Speed in Early versus Late Pregnancy: An in Vivo Cross-Sectional Study., Ultrasound in Medicine & Biology, vol 44 no. 3 (2018), pp. 515-521 [10.1016/j.ultrasmedbio.2017.10.017] [abs].
  • Deng, Y; Palmeri, ML; Rouze, NC; Haystead, CM; Nightingale, KR, Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging., Ultrasound in Medicine & Biology, vol 44 no. 2 (2018), pp. 303-310 [10.1016/j.ultrasmedbio.2017.10.003] [abs].