You are here

Aaron D. Franklin

Aaron D. Franklin

James L. and Elizabeth M. Vincent Associate Professor

Dr. Aaron Franklin received his Ph.D. in Electrical Engineering from Purdue University in 2008 and then spent six years on the research staff at the IBM T. J. Watson Research Center in Yorktown Heights, NY.  He is most widely known for his work on low-dimensional nanoelectronics with specific emphasis on carbon nanotube (CNT) transistors, including device scaling, transport studies, and advanced integration approaches.  While at IBM, Dr. Franklin was involved in many other projects with applications including photovoltaics, thin-film transistors, and supercapacitors.  Dr. Franklin joined the Duke faculty in 2014.

Research in the Franklin group is focused on improving the performance and functionality of nanomaterial-enabled electronic devices.  This includes high-performance devices from low-dimensional materials such as 2D crystals, carbon nanotubes, and nanowires.  Also included is the low-cost realm of printed electronics, which benefits from the incorporation of nanomaterials to enhance electrical transport over large printed features, among other application advantages.  The primary drive of the group's research is to improve performance for all electronic devices, including those with more custom form factors (flexibility, transparency, biocompatibility, etc.).  There are a growing variety of new electronics applications that nanomaterials are uniquely capable of enabling and the Franklin group works to make such applications possible.

Appointments and Affiliations

  • James L. and Elizabeth M. Vincent Associate Professor
  • Associate Professor in the Department of Electrical and Computer Engineering
  • Director of Graduate Studies for the Department of Electrical and Computer Engineering
  • Associate Professor of Chemistry

Contact Information

  • Office Location: CIEMAS 3473, Durham, NC 27708
  • Office Phone: (919) 681-9471
  • Email Address: aaron.franklin@duke.edu
  • Websites:

Education

  • Ph.D. Purdue University, 2008
  • B.S.E. Arizona State University, 2004

Research Interests

Improving the performance and functionality of nanomaterial-enabled electronic devices. From 1D carbon nanotubes to 2D semiconducting crystals, applications include: high-performance transistors, printed sensors for IoT, biocompatible or biofunctional electronics, and low-cost printed electronics. There is a growing variety of new electronics applications (flexible, transparent, biocompatible, etc.) that nanomaterials are uniquely capable of enabling and the Franklin group works to make such applications possible.

Courses Taught

  • ECE 230L: Introduction to Microelectronic Devices and Circuits
  • ECE 391: Projects in Electrical and Computer Engineering
  • ECE 392: Projects in Electrical and Computer Engineering
  • ECE 493: Projects in Electrical and Computer Engineering
  • ECE 494: Projects in Electrical and Computer Engineering
  • ECE 511: Foundations of Nanoscale Science and Technology
  • ECE 512: Emerging Nanoelectronic Devices
  • ECE 590: Advanced Topics in Electrical and Computer Engineering
  • ECE 899: Special Readings in Electrical Engineering
  • NANOSCI 511: Foundations of Nanoscale Science and Technology

In the News

Representative Publications

  • Andrews, JB; Mondal, K; Neumann, TV; Cardenas, JA; Wang, J; Parekh, DP; Lin, Y; Ballentine, P; Dickey, MD; Franklin, AD, Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors., Acs Nano (2018) [10.1021/acsnano.8b00909] [abs].
  • Najmaei, S; Neupane, MR; Nichols, BM; Burke, RA; Mazzoni, AL; Chin, ML; Rhodes, DA; Balicas, L; Franklin, AD; Dubey, M, Cross-Plane Carrier Transport in Van der Waals Layered Materials., Small (Weinheim an Der Bergstrasse, Germany), vol 14 no. 20 (2018) [10.1002/smll.201703808] [abs].
  • Lin, YC; McGuire, F; Franklin, AD, Realizing ferroelectric Hf0.5Zr0.5O2with elemental capping layers, Journal of Vacuum Science and Technology B, vol 36 no. 1 (2018) [10.1116/1.5002558] [abs].
  • Andrews, JB; Cardenas, JA; Lim, CJ; Noyce, SG; Mullett, J; Franklin, AD, Fully Printed and Flexible Carbon Nanotube Transistors for Pressure Sensing In Automobile Tires, Ieee Sensors Journal (2018), pp. 1-1 [10.1109/JSEN.2018.2842139] [abs].
  • Andrews, JB; Cardenas, JA; Mullett, J; Franklin, AD, Fully printed and flexible carbon nanotube transistors designed for environmental pressure sensing and aimed at smart tire applications, Proceedings of Ieee Sensors, vol 2017-December (2017), pp. 1-3 [10.1109/ICSENS.2017.8233875] [abs].