You are here

Kathryn Radabaugh Nightingale

Nightingale

Theo Pilkington Distinguished Professor of Biomedical Engineering

The goals of our laboratory are to investigate and improve ultrasonic imaging methods for clinically-relevant problems. We do this through theoretical, experimental, and simulation methods. The main focus of our recent work is the development of novel, acoustic radiation force impulse (ARFI)-based elasticity imaging methods to generate images of the mechanical properties of tissue, involving interdisciplinary research in ultrasonics and tissue biomechanics. We have access to the engineering interfaces of several commercial ultrasound systems which allows us to design, rapidly prototype, and experimentally demonstrate custom sequences to explore novel beamforming and imaging concepts. We employ FEM modeling methods to simulate the behavior of tissues during mechanical excitation, and we have integrated these tools with ultrasonic imaging modeling tools to simulate the ARFI imaging process. We maintain strong collaborations with the Duke University Medical Center where we work to translate our technologies to clinical practice. The ARFI imaging technologies we have developed have served as the basis for commercial imaging technologies that are now being used in clinics throughout the world.  We are also studying the risks and benefits of increasing acoustic output energy for specific clinical imaging scenarios, with the goal of improving ultrasonic image quality in the difficult-to-image patient.

Appointments and Affiliations

  • Theo Pilkington Distinguished Professor of Biomedical Engineering
  • Professor in the Department of Biomedical Engineering
  • Member of the Duke Cancer Institute
  • Bass Fellow

Contact Information

Education

  • Ph.D. Duke University, 1997
  • B.S. Duke University, 1989

Research Interests

Ultrasonic and elasticity imaging, specifically nonlinear propagation, acoustic streaming and radiation force; the intentional generation of these phenomena for the purpose of tissue characterization; finite element modeling of normal and diseased tissue when exposed to ultrasound, and performing both phantom and clinical experiments investigating these phenomena. Other areas of interest include prostate imaging, abdominal imaging, image-guided therapies, and the bioeffects of ultrasound.

Awards, Honors, and Distinctions

  • Lois and John L. Imhoff Distinguished Teaching Award. Pratt School of Engineering. 2018
  • Fellow. American Institute for Medical and Biological Engineering. 2016
  • Capers and Marion McDonald Teaching and Research Award. Pratt School of Engineering. 2015
  • Klein Family Distinguished Teaching Award. Pratt School of Engineering. 2007

Courses Taught

  • BME 354L: Introduction to Medical Instrumentation
  • BME 493: Projects in Biomedical Engineering (GE)
  • BME 494: Projects in Biomedical Engineering (GE)
  • BME 791: Graduate Independent Study

In the News

Representative Publications

  • Palmeri, ML; Milkowski, A; Barr, R; Carson, P; Couade, M; Chen, J; Chen, S; Dhyani, M; Ehman, R; Garra, B; Gee, A; Guenette, G; Hah, Z; Lynch, T; Macdonald, M; Managuli, R; Miette, V; Nightingale, KR; Obuchowski, N; Rouze, NC; Morris, DC; Fielding, S; Deng, Y; Chan, D; Choudhury, K; Yang, S; Samir, AE; Shamdasani, V; Urban, M; Wear, K; Xie, H; Ozturk, A; Qiang, B; Song, P; McAleavey, S; Rosenzweig, S; Wang, M; Okamura, Y; McLaughlin, G; Chen, Y; Napolitano, D; Carlson, L; Erpelding, T; Hall, TJ, Radiological Society of North America/Quantitative Imaging Biomarker Alliance Shear Wave Speed Bias Quantification in Elastic and Viscoelastic Phantoms., Journal of Ultrasound in Medicine, vol 40 no. 3 (2021), pp. 569-581 [10.1002/jum.15609] [abs].
  • Morris, DC; Chan, DY; Lye, TH; Chen, H; Palmeri, ML; Polascik, TJ; Foo, W-C; Huang, J; Mamou, J; Nightingale, KR, Multiparametric Ultrasound for Targeting Prostate Cancer: Combining ARFI, SWEI, QUS and B-Mode., Ultrasound Med Biol, vol 46 no. 12 (2020), pp. 3426-3439 [10.1016/j.ultrasmedbio.2020.08.022] [abs].
  • Trutna, CA; Knight, AE; Rouze, NC; Hobson-Webb, LD; Palmeri, ML; Nightingale, KR, Viscoelastic Characterization in Muscle using Group Speed Analysis and Volumetric Shear Wave Elasticity Imaging, Ieee International Ultrasonics Symposium, Ius, vol 2020-September (2020) [10.1109/IUS46767.2020.9251751] [abs].
  • Knight, AE; Trutna, CA; Rouze, NC; Hobson-Webb, LD; Palmeri, ML; Caenen, A; Nightingale, KR, Demonstration of Complex Shear Wave Patterns in Skeletal Muscle in vivo Using 3D SWEI, Ieee International Ultrasonics Symposium, Ius, vol 2020-September (2020) [10.1109/IUS46767.2020.9251599] [abs].
  • Chan, DY; Morris, DC; Lye, T; Polascik, TJ; Palmeri, ML; Mamou, J; Nightingale, KR, Evaluating Image Quality Improvement in Multiparametric Ultrasound Imaging of Prostate Cancer by Combining ARFI, SWEI, B-mode, and QUS, Ieee International Ultrasonics Symposium, Ius, vol 2020-September (2020) [10.1109/IUS46767.2020.9251796] [abs].