You are here

COVID+DS: Molecular methodology connected to COVID data

Jul 14

Tuesday, July 14, 2020 - 4:00pm to 5:00pm

Virtual session

Add to calendar »


Ricardo Henao

Molecular analysis of gene expression, microbiome, and proteomics data aims to understand biological processes by leveraging high-throughput technologies and data science. Aided by subject matter expertise, this combination has resulted in accelerated discoveries in health and disease. This form of analysis is particularly important for scientists studying how changes in high-throughput molecular measurements can be linked to health and disease mechanisms that could lead to new diagnostic tools and therapeutics. In the context of COVID-19 we seek to understand how the host response quantified via molecular measurements is associated with disease characteristics such as symptoms and severity. In this session we will go through the characteristics of the molecular data generated by some of these technologies and the fundamental processing and statistical analysis tools (including machine learning methods) that can be used to generate knowledge from these complex, high-dimensional data. The use cases will be framed around the COVID-19 molecular analysis work being done at Duke and other institutions. This session is part of the Duke+Data Science (+DS) program virtual series on COVID-19 + Data Science. Please join us for a 8-week series on data science methods with direct applications to the COVID-19 pandemic. Learn from Duke experts about the state-of-the-art in these 1-hour virtual sessions. For more information, please visit