Fitzpatrick Institute for Photonics Seminar: Quanta Image Sensor (QIS) Concept and Progress

Feb 20

Friday, February 20, 2015

12:00 pm - 1:00 pm
Fitzpatrick Center Schiciano Auditorium Side A


Dr. Eric R. Fossum

The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high speed readout, and a kernel or "cubicle" of bits (X,Y, t) is used to create a single output image pixel. The size of the cubicle can be adjust post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as "jots" and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1Tb/s. Basically, we are trying to count photons as they arrive at the sensor. Recent progress towards realizing the QIS for commercial and scientific purposes will be discussed. This includes investigation of a pump-gate jot device implemented in a 65nm process, power efficient readout electronics, currently less than 20pJ/b in 0.18 um CMOS, creating images from jot data with high dynamic range, and understanding the imaging characteristics of single-bit and multi-bit QIS devices, such as the inherent and interesting film-like D-log(H) characteristic. If successful, the QIS will represent a major paradigm shift in image capture.


Ginsberg, Margo

More Information