You are here

Leslie M. Collins

Collins

Professor of Electrical and Computer Engineering

Leslie M. Collins earned the BSEE degree from the University of Kentucky, and the MSEE, and PhD degrees from the University of Michigan, Ann Arbor. From 1986 through 1990 she was a Senior Engineer at Westinghouse Research and Development Center in Pittsburgh, PA. She joined Duke in 1995 as an Assistant Professor and was promoted to Associate Professor in 2002 and to Professor in 2007. Her research interests include physics-based statistical signal processing, subsurface sensing, auditory prostheses and pattern recognition. She is a member of the Tau Beta Pi, Sigma Xi, and Eta Kappa Nu honor societies. Dr. Collins has been a member of the team formed to transition MURI-developed algorithms and hardware to the Army HSTAMIDS and GSTAMIDS landmine detection systems. She has been the principal investigator on research projects from ARO, NVESD, SERDP, ESTCP, NSF, and NIH. Dr. Collins was the PI on the DoD UXO Cleanup Project of the Year in 2000. As of 2015, Dr. Collins has graduated 15 PhD students.

Appointments and Affiliations

  • Professor of Electrical and Computer Engineering
  • Faculty Network Member of the Duke Institute for Brain Sciences
  • Faculty Network Member of The Energy Initiative

Contact Information

Education

  • Ph.D. University of Michigan at Ann Arbor, 1995
  • M.Sc.Eng. University of Michigan at Ann Arbor, 1986
  • B.S.E. University of Kentucky at Lexington, 1985

Research Interests

Physics-based machine learning algorithms for big data, including developing remediation strategies for the hearing impaired and sensor-based algorithms for the detection of hazardous buried objects

Courses Taught

  • BME 493: Projects in Biomedical Engineering (GE)
  • BME 494: Projects in Biomedical Engineering (GE)
  • ECE 280L9: Signals and Systems - Lab
  • ECE 280L: Introduction to Signals and Systems
  • ECE 391: Projects in Electrical and Computer Engineering
  • ECE 392: Projects in Electrical and Computer Engineering
  • ECE 493: Projects in Electrical and Computer Engineering
  • ECE 494: Projects in Electrical and Computer Engineering
  • ECE 590: Advanced Topics in Electrical and Computer Engineering
  • ECE 891: Internship
  • ECE 899: Special Readings in Electrical Engineering
  • ENERGY 395: Connections in Energy: Interdisciplinary Team Projects
  • ENERGY 396: Connections in Energy: Interdisciplinary Team Projects
  • ENERGY 590: Special Topics in Energy
  • ENERGY 795: Connections in Energy: Interdisciplinary Team Projects
  • ENERGY 796: Connections in Energy: Interdisciplinary Team Projects

In the News

Representative Publications

  • Prabhudesai, KS; Collins, LM; Mainsah, BO, Automated feature learning using deep convolutional auto-encoder neural network for clustering electroencephalograms into sleep stages, International Ieee/Embs Conference on Neural Engineering, Ner, vol 2019-March (2019), pp. 937-940 [10.1109/NER.2019.8716996] [abs].
  • Shahidi, L; Collins, L; Mainsah, B, Application of a Graphical Model to Investigate the Utility of Cross-Channel Information for Mitigating Reverberation in Cochlear Implants, Proceedings 17th Ieee International Conference on Machine Learning and Applications, Icmla 2018 (2019), pp. 847-852 [10.1109/ICMLA.2018.00136] [abs].
  • Stump, E; Reichman, D; Collins, LM; Malof, JM, An exploration of gradient-based features for buried threat detection using a handheld ground penetrating radar, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, vol 11012 (2019) [10.1117/12.2519949] [abs].
  • Stump, E; Reichman, D; Collins, LM; Malof, JM, How transferable are downward-looking and handheld ground penetrating radar data? Experiments in the context of buried threat detection, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, vol 11012 (2019) [10.1117/12.2519969] [abs].
  • Jacobson, S; Reichman, D; Bjornstad, J; Collins, LM; Malof, JM, Reliable training of convolutional neural networks for GPR-based buried threat detection using the Adam optimizer and batch normalization, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, vol 11012 (2019) [10.1117/12.2519798] [abs].