Designing simple polymers with PROTEIN-like ACTIVITY: from Cell Penetrating peptide mimics to resilin-inspired co-continuous networks

Nov 5

Thursday, November 5, 2015

4:30 pm - 5:30 pm
Fitzpatrick Center Schiciano Auditorium Side B


Gregory Tew

Our primary research aim is to create new materials using a combination of principles, many of which are inspired by biology. We will discuss our newest results in which we have successfully mimicked that biological activity of protein transduction domains like HIV-TAT. The versatility of these synthetic mimics provides the opportunity to discover analogs with superior properties compared to their native sequences. Here we report the first detailed structure-activity relationship of a new PTD family of polymers based on a completely abiotic backbone. The synthetic approach easily allows doubling the density of guanidine functional groups, which increases the transduction efficiency of the sequences. Cellular uptake studies on three different cell lines (HEK 293T, CHO, and Jurkat T cells) confirm that these synthetic analogs are highly efficient novel protein transduction domain mimics (PTDMs), that are more effective than TAT49-57 and nonaarginine (R9) and also highlights the usefulness of polymer chemistry at the chemistry- biology interface. In another topic, phase-separated and self-assembled co-network materials offer a simple route to bicontinuous-like morphologies, which are expected to be highly beneficial for applications such as ion, charge, and oxygen transport. Despite these potential advantages, the systematic definition of co-network structures has not been achieved, largely due to the lack of well-controlled chemistries for their preparation.


Krieger, Katie

More Information